| Overarching Understandings: |
Using an understanding of place value, properties of operations, and operations with whole numbers, problems with decimals can be solved using addition and subtraction. Problems are solved using multiple representations: concrete models, drawings, equations, and a written explanation of the reasoning used. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential Questions:</td>
<td></td>
</tr>
</tbody>
</table>
• What is an effective way to estimate solutions to problems?
• When would I use estimation strategies in the real world?
• How can I use the two operations to solve real world problems?
• What strategies can we use to efficiently solve problems?
• What strategies can I use to help me make sense of the standard algorithms?
• How can I write an expression that demonstrates a situation or context? |
| Common Core State Standards: |
5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. |
| Key Vocabulary: | Sentence Frames: |
| whole number | My estimate is _____. |
| decimal tenths / hundredths | I used _____ to solve the problem by _____. |
| distributive property | This model/drawing shows _____. |
| estimate | |
| Suggested Materials: | place value charts |
| dice | colored markers/pens |
| colored tiles | grid paper |
| | |
| Number Talks: | **Number Talks are used to build number sense, develop fluency, and make sense of problems.** |
| Problem Solving |
Number Lines (Whole Numbers & Decimals) |
Suggested Order of Lessons

Objective 1: Students will add and subtract decimals using drawings or models, strategies based on place value, properties of operations, and the relationship between addition and subtraction. (5.NBT.7)

<table>
<thead>
<tr>
<th>Day</th>
<th>Source</th>
<th>Lesson Title</th>
<th>Page Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDUSD</td>
<td>Decimal Addition/Subtraction</td>
<td>Unit p. 8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>enVision 2.0</td>
<td>2-1 Mental Math</td>
<td>ENV TE p. 59</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>enVision 2.0</td>
<td>2-2 Estimate Sums and Differences</td>
<td>ENV TE p. 65</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>enVision 2.0</td>
<td>2-3 Use Models to Add and Subtract Decimals</td>
<td>ENV TE p. 71</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>enVision 2.0</td>
<td>2-4 Add decimals 2-5 Subtract decimals</td>
<td>ENV TE p. 77</td>
<td>ENV TE p. 83</td>
</tr>
<tr>
<td>6</td>
<td>Georgia</td>
<td>Rolling Around with decimals</td>
<td>Unit p. 9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>enVision 2.0</td>
<td>2-6 Add and Subtract Decimals</td>
<td>ENV TE p. 89</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Georgia</td>
<td>Check this</td>
<td>Unit p. 15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>enVision 2.0</td>
<td>2-7 Model with Math</td>
<td>ENV TE p. 95</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
SDUSD Math Lesson Map

The structure of math lessons should follow the Launch, Explore, Summarize format. This structure allows students to explore mathematical concepts with rigor (fluency, concept development, and application) to develop understanding in ways that make sense. Some rich tasks may take multiple days for students to explore. In these cases, each day should still follow the Launch, Explore, Summarize format.

LAUNCH (5–10 minutes)

The teacher sets the stage for learning by ensuring the purpose and the rationale of the lesson are clear by connecting the purpose to prior learning, posing the problem(s), and introducing the Explore task for students. During this time the teacher is identifying the tools and materials available, reviewing academic vocabulary, and setting the expectations for the lesson.

The students are actively engaged in a short task or discussion to activate prior knowledge in preparation of the Explore task. Students may be using tools and/or manipulatives to make sense of the mathematical concept.

<table>
<thead>
<tr>
<th>WHOLE GROUP</th>
</tr>
</thead>
</table>

EXPLORE (15–20 minutes)

The teacher provides opportunities and support for students to develop conceptual understanding by providing meaningful explorations and tasks that promote active student engagement.

The teacher monitors the development of student understanding by conferring with students and asking students questions in order to understand and stimulate their thinking. The teacher uses this information to plan for the Summarize and, if needed, to call the students together for a mid-Explore scaffold to focus or propel student thinking.

The students are actively engaged in constructing meaning of the mathematical concept being taught. Students engage in private reasoning time before working with partners or groups. Students use multiple representations to solve rich tasks and communicate their mathematical understanding.

<table>
<thead>
<tr>
<th>INDIVIDUAL, PAIRS, OR SMALL GROUP</th>
</tr>
</thead>
</table>

SUMMARIZE (15–20 minutes)

The teacher provides opportunities to make public the learning that was accomplished by the students by sharing evidence of what was learned, and providing opportunities for students to analyze, compare, discuss, extend, connect, consolidate, and record thinking strategies. A summary of the learning is articulated and connected to the purpose of the lesson.

The students are actively engaged as a community of learners, discussing, justifying, and challenging various solutions to the Explore task. The students are able to articulate the learning/understanding of the mathematical concept being taught either orally or in writing. Students can engage in this discussion whether or not they have completed the task.

<table>
<thead>
<tr>
<th>WHOLE GROUP</th>
</tr>
</thead>
</table>

PRACTICE, REFLECT, and APPLY (10–15 minutes)

This time is saved for after the Summarize so students can use what they have learned to access additional tasks. The opportunities that teachers provide are responsive to student needs.

The students may have the opportunity to: revise their work, reflect on their learning, show what they know with an exit slip, extend their learning with a similar or extension problem, or practice with centers or games.

The teacher confers with individual students or small groups.

<table>
<thead>
<tr>
<th>INDIVIDUAL, PAIRS, OR SMALL GROUP</th>
</tr>
</thead>
</table>

FORMATIVE ASSESSMENT

The teacher determines what students are learning and are struggling with by conferring with students and by examining student work throughout the lesson. This formative assessment informs ongoing adjustments in the lesson and next steps for the class and each student.

<table>
<thead>
<tr>
<th>The students are actively engaged in showing their learning accomplishments related to the mathematical concept of the lesson.</th>
</tr>
</thead>
</table>

Number Talks

15 minutes

Number Talks are a chance for students to come together to practice fluency and share their mathematical thinking by engaging in conversations and discussions around problem solving and number sense activities.
SDUSD Mathematics Units

We understand that for deep and sustainable change in mathematics to take place, teachers, students, and leaders must grapple with what the rich mathematics asked for by Common Core State Standards-Mathematics looks like in the classroom, in pedagogical practice, in student work, in curriculum, and in assessments. It is our goal that teachers and site leaders work collaboratively toward a shared vision of math instruction that develops mathematically proficient students as defined by the CCSS-Mathematics. It is our hope that these units provide a common instructional foundation for this collaboration.

The SDUSD Mathematics Units are designed to support teachers and students as we shift from a more directive style of teaching mathematics toward a more inquiry-based style. In problem-based learning, students develop the habits of mind and interaction of mathematicians through engaging in mathematical discourse, connecting representations, asking genuine questions, and justifying and generalizing ideas. These mathematical habits reflect the shifts in pedagogy required to support the Common Core Standards for Mathematical Practice.

The SDUSD math units are compiled with multiple sources to ensure students have a variety of mathematical experiences aligned to the CCSS. All lessons should follow the structure of Launch, Explore, and Summarize. The following document will guide teachers in planning for daily lessons, by helping them understand the structures of each of the sources.

Structure for enVision 2.0 Lessons

Use Step 1 Develop: Problem-Based Learning is the Launch, Explore, and Summarize for every enVision 2.0 Lesson.

Launch: (Before)

Start with the Solve-and-Share problem. Pose the problem to the students making sure the problem is understood. This does not mean you explain how to do the problem, rather you ensure that students understand what the problem is about. Establish clear expectations as to whether students will work individually, in pairs, or in small groups. This includes making sure students know which representations and tools they might be using or if they will have a choice of materials.

Explore: (During)

Students engage in solving the problem using a variety of strategies and tools. Use the suggested guiding questions to check in briefly with students as needed, in order to understand and push student thinking. You may want to use the “Extension for Early Finishers” as needed.

Summarize: (After)

Select student work for the class to analyze and discuss. If needed, use the Sample Student Work provided for each lesson in enVision 2.0.

Practice, Reflect, Apply: (Select Problems from Workbook Pages, Reteach, Games, Intervention Activity)

During this time, students may revise their work from the Explore time or you may use pieces of Step 2 Develop: Visual Learning and Step 3 Assess and Differentiate. Note: The Quick-Check component is now a few select problems that are highlighted with a pink checkmark in the Teacher’s Edition. This time provides an excellent opportunity to pull small groups of students that may need additional support.
Structure for Engage NY Lessons

Launch/Explore: (Concept Development)

The Concept Development constitutes the major portion of instructional time when new learning is introduced. During this time, the lessons move through a deliberate progression on material, from concrete to pictorial to abstract. Your word choice may be slightly different from that in the vignettes, and you should use what works from the suggested talking points to meet your students’ needs.

Summarize: (Student Debrief)

The student debrief piece helps develop students’ metacognition by helping them make connections between parts of the lesson, concepts, strategies, and tools on their own. The goal is for students to see and hear multiple perspectives from their classmates and mentally construct a multifaceted image of the concepts being learned. Through questions that help make these connections explicit, and dialogue that directly engages students in the Standards for Mathematical Practice, they articulate those observations so the lesson’s objective becomes eminently clear to them.

Practice, Reflect, Apply: (Problem Set/Exit Ticket)

The Problem Set often includes fluency pertaining to the Concept Development, as well as conceptual and application word problems. The primary goal of the Problem Set is for students to apply the conceptual understandings learned during the lesson.

Exit Tickets are quick assessments that contain specific questions to provide a quick glimpse of the day's major learning. The purpose of the Exit Ticket is twofold: to teach students to grow accustomed to being individually accountable for the work they have done, and to provide you with valuable evidence of the efficacy of that day's work which is indispensable for planning purposes. This time provides an excellent opportunity to pull small groups of students that may need additional support.
Structure for Georgia Standards Lessons

The Georgia Standards tasks have been included in the units to provide students opportunities for rich, engaging, real-world mathematical experiences. These tasks allow students to develop conceptual understanding over time and may take more than one math lesson to complete. The extra time for these lessons has been allotted for in the units. When planning for a Georgia Task, it is suggested that you start by doing the mathematics the students will be engaging in before presenting it to the students.

Launch:

You may need to activate prior knowledge for some of the tasks that will be presented by showing images, letting students engage in partner talk about real-life situations, or using the suggested activity from the background knowledge component. Pose the task to the students making sure the task is understood. This does not mean that you explain how to do the problem, rather you ensure that students understand what the problem is about. You establish clear expectations as to whether students will work individually, in pairs, or in small groups. This includes making sure students know which representations and tools they might be using or if they will have a choice of materials.

Explore:

Students will engage in working on the task using a variety of strategies and tools. You may use the Essential Questions or Formative Assessment questions provided in the lesson as needed in order to understand and prompt student thinking.

Summarize:

Select student work for the class to analyze and discuss. Use partnerships and whole-class collaborative conversations to help students make sense of each others’ work. The Formative Assessment questions may also be used during this time to facilitate the conversation.

Practice, Reflect, Apply:

At this time, provide students time to reflect and revise their work from the Explore after they have engaged in the conversation in the Summarize portion of the lesson. This time provides an excellent opportunity to pull small groups of students that may need additional support.
Common Core Approach to Assessment

Assessments provide ongoing opportunities for students to show their learning accomplishments in addition to offering students a pathway to monitor their progress, celebrate successes, examine mistakes, uncover misconceptions, and engage in self-reflection and analysis. A central goal of assessments is to make students aware of their strengths and weaknesses and to give them opportunities to try again, do better and, in doing so, enjoy the experience of seeing their hard work pay off as their skill and understanding increases. Furthermore, the data collected as a result of assessments represent invaluable tools in the hands of teachers and provides specific data about student understanding that can inform instructional decisions.

For each Topic in enVision 2.0 the following assessments are available:

- In the Student Workbook:
 - Topic Assessment
 - Performance Assessment

- Online Teacher’s Edition:
 - Additional topic assessment Black-line Master
 - Additional performance assessment Black-line Master

- Online Student Assessment
 - Teacher can modify the number of items on an assessment
 - Teacher can rearrange order of problems

All of the assessment items for enVision 2.0 are aligned to the types of problems students may encounter on state testing. We have found enVision 2.0 has an excessive amount of items suggested for each topic. To avoid over-assessing, we recommend that school sites work collaboratively in grade-level teams to determine how to best use all the assessment resources available to evaluate student understanding and reduce the amount of items assessed. The SDUSD math units have grouped related topics together within a unit. Sites may choose to only give an assessment at the end of each unit, consisting of items from multiple topics, rather than using multiple days to assess each topic individually.
Fifth Grade Unit 2
Lesson 1

<table>
<thead>
<tr>
<th>LESSON FOCUS:</th>
<th>Adding and Subtracting Decimals</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALS</td>
<td>Hundreds grid with more than 1 grid on paper (enVision 2.0 Teaching Tool 8), Base-Ten materials</td>
</tr>
</tbody>
</table>

LAUNCH
Pose the following problem:

Gloria rode her bicycle 0.73 miles in the morning, and 1.16 miles in the afternoon. How far did Gloria travel? How will you use tools to represent and make sense of this problem?

EXPLORE:
Give students 5 minutes PTT (Private think time) to engage in problem After PTT, have students partner talk, explaining why their representation makes sense.

The representation should include labels to help students make sense of what they are creating. (If they are not including labels, display a piece of work and ask questions as to what their representation mean. This is meant to guide the students to using labels to represent their work.)

Repeat same problem, but ask how many more miles she rode in the afternoon than in the morning. Ask students to use tool to create a model that represents the problem, and how it makes sense.

For early finishers, use:
Question 2 – Lisa walked .86 miles to school, David walked .37 miles to school. How far did the students walk in total? Who walked further, how much further did they walk?

Create a visual representation that models the story. Be prepared to explain why you created this model, and how it helps you.

SUMMARIZE
Refocus the class by sitting in a large circle for a whole class discussion.

Pose the following question: How does creating a visual representation help you solve problems in mathematics? (choose student work that includes a visual representation, and one that includes just numbers). Compare student work and discuss how a visual representation makes it easier to make sense.
PRACTICE TASK: Rolling Around with Decimals

The focus of this game is on subtracting decimal numbers to the hundredths place, but will also provide students the opportunity to compare decimal numbers.

STANDARDS FOR MATHEMATICAL CONTENT

MCC5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

STANDARDS FOR MATHEMATICAL PRACTICE

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

BACKGROUND KNOWLEDGE

Students should have had prior experiences identifying and representing decimal numbers. Students should be able to read decimal numbers and understand the value of the whole number compared to tenths and hundredths.

Common Misconceptions

Students might compute the sum or difference of decimals by lining up the right-hand digits as they would whole number. For example, in computing the difference of 13.96-2.9, students will write the problem in this manner:

13.96
-2.9
13.67

Students may have also developed an overgeneralization of the commutative and associative properties which will lead them to incorrectly subtract decimals without regrouping. For example, in computing the difference of 13.76-1.97, students will subtract in this manner:

13.76
-1.97
12.21
To help students add and subtract decimals correctly, have them first estimate the sum or difference. Providing students with a decimal-place value chart will enable them to place the digits in the proper place.

ESSENTIAL QUESTIONS

- Why is place value important when subtracting whole numbers and decimal numbers?
- How do we subtract decimal numbers?
- How does the placement of a digit affect the value of a decimal number?

MATERIALS

- “Rolling Around with Decimals, Game Directions” student sheet (one per group)
- “Rolling Around with Decimals, Recording Sheet” student recording sheet (one per pair)
- Dice (three dice per group, two different colors)

TASK DESCRIPTION, DEVELOPMENT, AND DISCUSSION

Students play a game that allows them to practice subtracting and comparing decimal numbers.

Comments
To introduce and teach this game, display the game recording sheet. Play the game with the class against the teacher or one side of the room against the other. You can play an abbreviated game if students quickly understand what to do.

While students are playing the game, be sure decimal materials (base ten blocks, money, etc.) are available to students who wish to use them.

One-way student understanding can be quickly assessed is by asking students to write a few sentences to explain why place value is important in this game and/or the strategies they used while playing the game.

Student recording sheets can also be used to assess student understanding of addition with decimal numbers.

An alternative way to play this game is to limit it to 10 rounds. The winner can be the player with the smallest difference or the largest difference – this should be determined before the game begins. Also, “Rolling Around with Decimals” can be modified to include addition as follows:

- For addition, players keep a running total of rolls. The winner is the player with the highest sum after 10 rounds.

http://nlvm.usu.edu/en/nav/frames_asid_264_g_2_t_1.html?from=category_g_2_t_1.html
Students should be able to represent subtraction of decimal numbers, including regrouping. Also, it is important for students to recognize that they need to line up decimal place values in order to subtract correctly. If some students recognize that the decimal points are always lined up as well, that is fine, but more importantly students must recognize that each place value needs to be lined up.

Another strategy that is often helpful for students to use to find the difference between two numbers is an open number line. Students have had many experiences counting up on a number line to subtract whole numbers. This knowledge should help them easily transition to decimal subtraction on an open number line. The problem $1.41 - 0.56$ can be solved using an open number line as shown below.

Start by placing 0.56 on the number line. Count up from 0.56 to 1.41 to determine the difference between the two decimal numbers. The difference can be found by adding $0.04 + 0.4 + 0.4 + 0.1 = 0.85$.

Task Directions
Students will follow the directions below for “Playing with Decimals, Rolling Around with Decimals, Game Directions” student sheet.

Number of Players: 2-3

Materials:
- 3 dice (1 one color, 2 another color);
- Recording Sheet (one for each pair of players)
- Pencil

Directions:
1. The one die will represent the whole number portion of the number. The other two dice will represent the decimal portion of the number.
2. Take turns with a partner rolling the number cubes.
3. With the number cubes you have rolled, create the largest decimal you can using the single color for the whole number and the additional two dice for the decimal.
4. Record your roll on the recording sheet.
5. After all players have completed their first roll, each player subtracts the decimal created from 50.
6. After each additional roll, each player will subtract the new decimal amount from the previous decimal difference.
7. The first player with zero remaining or whose roll is larger than the remaining difference is the winner.

FORMATIVE ASSESSMENT QUESTIONS

• Why is place value important when subtracting decimal numbers?
• How do you know you created the largest possible decimal?
• How would this game be different if you used all three dice to make the largest possible decimal number?
• What strategy/strategies are you using to win the game? How are your strategies working?
• What strategy (strategies) are you using to subtract the decimal numbers? How are your strategies working?

DIFFERENTIATION

Extension
• Ask students to write a story for a subtraction problem with decimals. If necessary, help students brainstorm contexts for which decimal numbers would be applicable. Allow students to trade stories with a peer to solve.

Intervention
• Allow students to play the game with money. Students can start with $50.00, make trades and subtract or count back change to determine the running totals.
• Base Ten Blocks
Name________________________Date______________________________

Rolling Around With Decimals

Game Directions

Number of Players: 2-3

Materials:
- 3 dice (1 one color, 2 another color);
- Recording Sheet (one for each pair of players)
- Pencil

Directions:
1. The one die will represent the whole number portion of the number. The other two dice will represent the decimal portion of the number.
2. Take turns with a partner rolling the number cubes.
3. With the number cubes you have rolled, create the largest decimal you can using the single color for the whole number and the additional two dice for the decimal.
4. Record your roll on the recording sheet.
5. After all players have completed their first roll, each player subtracts the decimal created from 50.
6. After each additional roll, each player will subtract the new decimal amount from the previous decimal difference.
7. The first player with zero remaining or whose roll is larger than the remaining difference is the winner.

Example:
Player 1 has the following rolls:

1st turn:
- Ones place: 2
- Decimal places: 1, 5

The largest possible number would be 2.51

2nd turn:
- Ones place: 3
- Decimal places: 2, 1

The largest possible number would be 3.21

Player 1’s score sheet would look as shown.
Rolling Around with Decimals

Recording Sheet

Rolling Around With Decimals

<table>
<thead>
<tr>
<th>Ones Place</th>
<th>Tenths Place</th>
<th>Hundredths Place</th>
<th>50.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CULMINATING TASK: Check This
Adapted from New York City Schools Tasks

The purpose of the task is to introduce real life problem while reinforcing the concepts of decimals taught throughout the unit.

STANDARDS FOR MATHEMATICAL CONTENT

MCC5.NBT.3 Read, write, and compare decimals to thousandths.

a. Read and write decimals to thousandths using base ten numerals, number names, and expanded form, e.g., \(347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times (1/1000)\).

b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

MCC5.NBT.4 Use place value understanding to round decimals to any place. Perform operations with multi-digit whole numbers and with decimals to hundredths.

MCC5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

STANDARDS FOR MATHEMATICAL PRACTICE

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
6. Attend to precision.

BACKGROUND KNOWLEDGE

Students should have had many opportunities to identify, read, and illustrate decimal numbers. They should also have had opportunities to add and subtract amounts of money. Students’ work will require accuracy in computation as well as reasoning to determine amounts to be added or subtracted. Teachers should model using a checkbook register and associated vocabulary before introducing the task.

ESSENTIAL QUESTIONS

- How can you find out how much money you have in your checking account?
- How can I use decimals to make sense of money?
- How can I decide when to add and when to subtract?
- Why is accuracy important?
MATERIALS

- Blank checkbook registers
- Task pages

TASK DESCRIPTION, DEVELOPMENT, AND DISCUSSION

This culminating task represents the level of depth, rigor, and complexity expected of all fifth grade students to demonstrate evidence of learning. Although this is a culminating tasks, teachers should expect to provide the necessary support with regards to the checkbook register as using a checkbook register is not the focus of this task.

Comments

Students should be given opportunities to revise their work based on teacher feedback, peer feedback, and metacognition which includes self-assessment and reflection.

Suggestions for Classroom Use

While this task may serve as a summative assessment, it also may be used for assessment and/or as a project. It is important that all elements of the task be addressed throughout the learning process so that students understand what is expected of them.

Task Directions

This task may be introduced by showing the model of a checkbook register and demonstrating its use. Students should also be familiar with the connections between adding and subtracting with models and with the standard algorithm. Prior to implementing the task, students should review the process of adding and subtracting money (decimals). Students should be consistently using straight columns for addition and subtraction.

It will be necessary for teachers to introduce vocabulary related to banking situations: deposit, credit, payment, withdrawal, debit, balance, etc. Students will also need to be able to recognize real life situations that either suggest addition or subtraction. Comparing and contrasting how these operations are used in a banking money situations will be helpful.

Since the main purpose of this task is not to learn how to use a checkbook register, teachers should expect to provide assistance as it relates to the use of the register.

FORMATIVE ASSESSMENT QUESTIONS

- Why did you choose that operation?
- What would cause you to add money in your checkbook register?
- What would cause you to subtract money in your checkbook register?
- How will you know if you have enough money to buy an Xbox after week one?
- Should you buy the Xbox after week one? Why or why not?
- What affect would buying the Xbox after week one have on your life during week two?
CULMINATING TASK:

CHECK THIS

You are hoping that you will be able to purchase an Xbox One for $499.50, so you are taking over managing your family’s checkbook for two weeks. During this time period you will make deposits, make withdrawals, and write checks in order to pay various bills. Your family account will begin with a balance of $600.00.

- Record the transactions in your checkbook register choosing the correct operation for each transaction.
- Find the balance of the account at the end of each week. Make sure your balance at the beginning of Week 2 is a reflection of the balance at the end of Week 1.
- Answer the reflection questions.

Week 1:

- **7/14** You are mowing lawns in your neighborhood to earn money to buy an Xbox One for the family. The rate for mowing lawns is $10.00 per lawn. You mowed 3 lawns, your sister mowed 2 lawns, and your brother mowed half a lawn before he broke the lawn mower. You all deposited your money into the account toward the purchase of an Xbox One.
- **7/15** You wrote Check #100 to Pet Palace to buy your new dog, Bongo, for $99.00 and his accessories which cost $18.96.
- **7/16** You found a $20.00 bill under the seat in the car and you used it to buy ice cream for $4.37. You deposited the rest of the money.
- **7/17** Your dad had a flat tire. He withdrew $95.88 for a new tire.
- **7/19** Baseball tickets cost $11.95 each. You took out money to buy one for you and your friend.
- **7/20** Aunt Emily sent an early birthday present in the amount of $75.00. You deposit it toward the purchase of an Xbox One.

Week 2:

- **7/22** You wrote Check #103 in the amount of $158.36 to pay the electric bill.
- **7/23** Your family has decided to go to the movies. Adult tickets cost $10.95 and child tickets cost $6.15. You write Check #104 to pay for your mom and dad (both adult tickets) and you, your brother, and sister (all child tickets).
- **7/25** While walking Bongo, the leash breaks. You write Check #105 in the amount of $8.13 to Pet Palace to replace Bongo’s broken leash.
- **7/27** You spend the afternoon babysitting for your little cousin at the rate of $4.75 per hour. You worked from 2 PM until 5 PM. You deposit it all into the account.
- **7/29** You count up all the change in your piggy bank. You had seventy-six dollars and forty-one cents which you deposit into the account.
Week 1:

<table>
<thead>
<tr>
<th>Date</th>
<th>Check #</th>
<th>Payment Issued to or Description of Deposit</th>
<th>Amount of Payment</th>
<th>Amount of Deposit</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>To: Payment/Deposit</td>
<td></td>
<td></td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For: Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To: Payment/Deposit</td>
<td></td>
<td></td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For: Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To: Payment/Deposit</td>
<td></td>
<td></td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For: Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To: Payment/Deposit</td>
<td></td>
<td></td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For: Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To: Payment/Deposit</td>
<td></td>
<td></td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For: Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To: Payment/Deposit</td>
<td></td>
<td></td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For: Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To: Payment/Deposit</td>
<td></td>
<td></td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For: Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To: Payment/Deposit</td>
<td></td>
<td></td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For: Balance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENDING BALANCE
Week 2:

<table>
<thead>
<tr>
<th>Date</th>
<th>Check #</th>
<th>Payment Issued To or Description of Deposit</th>
<th>Amount of Payment</th>
<th>Amount of Deposit</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>To:</td>
<td></td>
<td></td>
<td>Payment/Deposit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For:</td>
<td></td>
<td></td>
<td>Balance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To:</td>
<td></td>
<td></td>
<td>Payment/Deposit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For:</td>
<td></td>
<td></td>
<td>Balance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To:</td>
<td></td>
<td></td>
<td>Payment/Deposit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For:</td>
<td></td>
<td></td>
<td>Balance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To:</td>
<td></td>
<td></td>
<td>Payment/Deposit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For:</td>
<td></td>
<td></td>
<td>Balance</td>
</tr>
</tbody>
</table>

ENDING BALANCE
1. Using your balance at the end of the week, represent your total in all three number forms:

<table>
<thead>
<tr>
<th>Base Ten Numeral</th>
<th>Expanded Form</th>
<th>Number Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Rounding to the nearest tenth/dime, what is the difference in your bank account from when you started this week to when you finished this week? Order?

3. Explain how you solved question #2, including how you round decimals.

 __

 __

 __

4. Within the last two weeks, how much money have you spent on Bongo and all of his supplies? Show your work:

5. Using the total amount you spent on Bongo over the past two weeks, represent your total in all three number forms

<table>
<thead>
<tr>
<th>Base Ten Numeral</th>
<th>Expanded Form</th>
<th>Number Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Your family has been saving up their money for some time to get an Xbox One. If the Xbox costs $499.50, do you have enough money to purchase it? How do you know? Explain using comparison and place value terms:

 __

 __

 __

 __